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Abstract 

Nonlinear simulations are presented for instability and transition in 

parallel water boundary layers subjected to pressure gradient, suction, o r  

heating control. In the nonlinear regime, finite amplitude two-dimensional 

Tollmien-Schlichting waves grow faster than is predicted by linear theory. 

Moreover, this discrepancy is greatest in the case of heating control. Like- 

wise, heating control is found to be the least effective in delaying secondary 

instabilities of both the fundamental and subharmonic type. Flow-field 
details (including temperature profiles) are presented for both the uncon- 
trolled boundary layer and the heated boundary layer. 
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Introduction 

Laminar f low c o n t r o l  (LFC) techniques have been inves t iga t ed  e x t e n s i v e l y  

bo th  exper imenta l ly  and t h e o r e t i c a l l y .  Most of t he  t h e o r e t i c a l  work has  re- 

l i e d  on l i n e a r  theory  and asymptot ic  methods. Since t h e  l i t e r a t u r e  on LFC i s  

so v a s t ,  we simply r e f e r  the r eade r  t o  the survey a r t i c l e  by Hefner and 

Bushnel l  (1979) and c i t e  s p e c i f i c a l l y  only  t h a t  work which i s  e s p e c i a l l y  

p e r t i n e n t  t o  our own. Wazzan, Okamura, and Smith (1968) have performed an 

ex tens ive  s tudy  of t h e  l i n e a r  s t a b i l i t y  of the  hea ted ,  p a r a l l e l ,  water 

boundary l a y e r .  They ignored the temperature  f l u c t u a t i o n s  and found t h a t  wall 

hea t ing  increased  t h e  c r i t i c a l  Reynolds number. Lowell and Reshotko (1974) 

included the  e f f e c t s  of  temperature  pe r tu rba t ions  i n  the l i n e a r  s t a b i l i t y  

a n a l y s i s  and concluded t h a t  they d id  not s i g n i f i c a n t l y  change the  r e s u l t s .  

S t r a z i s a r ,  Reshotko, and Prahl  (1977) and Barker (1979) v e r i f i e d  experimental-  

l y  t h e  l i n e a r  s t a b i l i t y  r e s u l t s  f o r  low amplitude two-dimensional Tollmien- 

Schlichting-Schubauer (TS) waves. They found t h a t  the  p a r a l l e l  theory  gave an 

adequate  d e s c r i p t i o n  of t he  n e u t r a l  curve  except  near  t h e  c r i t i c a l  Reynolds 

numbers f o r  s l i g h t l y  heated flows. 

However, even i f  h igh  i n t e n s i t y  bypass mechanisms (Morkovin (1 969))  a r e  

not  involved,  l i n e a r  theory d e s c r i b e s  only  the  f i r s t  s t a g e  of  t r ans i t i on - - the  

slow growth of the  primary, TS i n s t a b i l i t y .  Subsequent s t a g e s  are due t o  non- 

l i n e a r  i n t e r a c t i o n s .  A wide v a r i e t y  of  asymptot ic  methods have been used t o  

d e s c r i b e  secondary i n s t a b i l i t i e s  a r i s i n g  from the i n t e r a c t i o n  of three- 

dimensional  d i s tu rbances  with the  primary 2-D TS wave. Of t h e s e  methods 

Floquet  theory  ( s e e  the  review by Herbert  (1988))  has  been p a r t i c u l a r l y  

success fu l  i n  c l a r i f y i n g  the  secondary i n s t a b i l i t i e s  of both fundamental and 

subharmonic type i n  channels  and boundary l a y e r s .  These methods have ye t  t o  

be appl ied  t o  c o n t r o l l e d  boundary l a y e r s .  



-2- 

Experimental (Klebanoff, Tidstrom, and Sargent (1962), Kovasznay, Komoda, 

and Vasudeva (1962), Hama and Nutant (1963), Wortmann (1977), and Wlliams, 

Fasel, and Hama (1984)) and numerical (Wray, Hussaini, and Degani (1977), Wray 

and Hussaini (1980, 1984), Orszag and Patera (19831, Kleiser and Schumann 

(1984))  work have demonstrated that the fundamental secondary instability for 

uncontrolled boundary layers leads to the emergence of periodic lambda 

vortices and to the development of detached shear layers which ride on top of 

them. The lambda vortices originate near the critical layers where the wave 

speed of the 2-D mode matches the local mean flow speed. They originate 

because of the secondary instability and they intensify because of nonlinear 

self-induction effects. The detached shear layer arises because the mean flow 

must traverse the vortices. Subsequent developments are at best only qualita- 

tively understood: the shear layers roll up and shed discrete vortices (Hama 

and Nutant (1963)) and eventually turbulence ensues. The lambda vortices a.nd 

the detached shear layers are strongly three-dimensional, time-dependent 

structures. Numerical simulations have the potential to provide a theoretical 

prediction of the tertiary instabilities of these structures without resorting 

to drastic simplifications, such as assumptions of two-dimensionality, weak 

three-dimensionality, or quasi-steadiness. Such predictions via numerical 

simulations, however, are quite costly and have been furnished only for 

channel flow (Gilbert and Kleiser (19861, Krist and Zang (1987)). 

Experiments on the subharmonic secondary instability have not yet pro- 

duced such great detail on the evolution of the lambda vortices. Likewise, 

nost numerical simulations of subharmonic transition (Spalart and Yang (1987))  

have proceeded only to the stage at which these structures emerge. Moreover, 

little or no experimental work has been done on either secondary instability 

in controlled boundary layers. 
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In  t h i s  paper we apply  d i r e c t  numerical  s imula t ions  of  the  time- 

dependent ,  incompressible  Navier-Stokes equat ions  t o  explore  a v a r i e t y  of non- 

l i n e a r  e f f e c t s  i n  boundary l a y e r s  subjec ted  t o  p re s su re  g r a d i e n t ,  s u c t i o n ,  o r  

hea t ing  c o n t r o l s .  The LFC technique a r e  here  l i m i t e d  to  pas s ive ,  s p a t i a l l y  

and tempora l ly  uniform c o n t r o l s ,  with t h e  emphasis on hea t ing  con t ro l  f o r  

water  boundary l a y e r s .  The e f f e c t  of f i n i t e  ampli tudes on the growth of  2-D 

TS waves i s  examined f i r s t .  Then a comparison i s  made of  the  e f f e c t  of  t he  

LFC t echniques  on both the fundamental and subharmonic secondary i n s t a b i l i -  

t ies .  Next, f low v i s u a l i z a t i o n s  a r e  presented f o r  t h e  e a r l y  s t a g e s  of  t h e  

t e r t i a r y  i n s t a b i l i t y .  F i n a l l y ,  t h e  c r u c i a l  r o l e  played by l o n g i t u d i n a l  

v o r t i c e s  i n  the  fundamental i n s t a b i l i t y  i s  i l l u s t r a t e d .  

Formulation 

The boundary l a y e r  on a f l a t  p l a t e  i s  i l l u s t r a t e d  i n  Figure 1. The 

s t reamwise,  normal, and spanwise d i r e c t i o n s  a r e  denoted by x ,  y ,  and z, re- 

s p e c t i v e l y .  The displacement  th i ckness  6* i n c r e a s e s  i n  the  streamwise 

d i r e c t i o n .  A t  any d i s t a n c e  xo from t h e  l ead ing  edge, one can d e f i n e  a 

Reynolds number Re based on the  v e l o c i t y  urn and kinematic  v i s c o s i t y  va, 

i n  t he  f r e e  stream and t h e  l o c a l  displacement  th i ckness .  

The t r a n s i t i o n  process  of  the  growing boundary l a y e r  i s  inf luenced  by 

s i g n i f i c a n t  non-l inear ,  three-dimensional and non-para l le l  e f f e c t s .  Unfor- 

t u n a t e l y ,  e x i s t i n g  computer r e sources  a r e  only  adequate f o r  t r e a t i n g  two ou t  

of  t hese  th ree  e f f e c t s .  A common compromise i s  t o  s tudy  the p a r a l l e l  boundary 

l a y e r  (see Figure  2 )  i n s t ead  of t he  t r u e ,  growing one. Here the focus i s  on 

t h e  v i c i n i t y  of some po in t  ~0 ( see  Figure 1) and t h e  approximation i s  t h a t  
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* 
t h e  displacement  th i ckness  remains cons t an t  ( i n  x) a t  t he  va lue  6 ; t h e  

mean flow i s  s t r i c t l y  i n  the  streamwise d i r e c t i o n  and i s  g iven  by 

g o ( x , y , z , t )  = (uo(y),O,O),  where ug(y) i s  the mean v e l o c i t y  p r o f i l e  which 

fol lows from the  s i m i l a r  boundary-layer equat ions  a t  xo. As a consequence, 

on ly  the  non-l inear  and the  three-dimensional e f f e c t s  a r e  taken i n t o  

account .  The neg lec t  o f  the  non-para l le l  e f f e c t s  should be se r ious  on ly  i f  

t h e r e  i s  apprec iab le  growth on the  s c a l e  (ATs) of  the Tollmien-Schlichting 

(TS) waves. Since t h e  mean flow i n  the p a r a l l e l  boundary l a y e r  i s  uniform 

i n  x, a Four i e r  approximation i n  x i s  h igh ly  accu ra t e ;  moreover, on ly  one 

s p a t i a l  wavelength need be resolved f o r  t he  temporal t r a n s i t i o n  problem. 

Thus, h i g h l y  reso lved  computations can be performed, wel l  i n t o  the  s t r o n g l y  

non-l inear  regime. 

"0 

F igure  3 d e p i c t s  t h r e e  types  of laminar  flow c o n t r o l  (LFC) techniques.  

The dimensionless  parameters desc r ib ing  s e l f - s i m i l a r  s o l u t i o n  of  the Falkner- 

Skan boundary l a y e r  equat ions  a r e  def ined  i n  the  f i g u r e .  These a r e  B €or  

p re s su re  g r a d i e n t ,  Fw f o r  s u c t i o n ,  and T f o r  heat ing.  I n  t h e  l a s t  c a s e ,  

and T,, respec t ive-  the  €ree s t ream and w a l l  t empera tures ,  denoted by T, 

l y ,  (and g iven  i n  degrees  Kelvin) ,  d i f f e r  and the  kinematic  v i s c o s i t y  depends 

upon the  temperature  T. 

ZRngths a r e  sca led  by the  displacement  th i ckness  a t  XO, v e l o c i t i e s  by 

the  free-s t ream v e l o c i t y  a t  xo, and t h e  d e n s i t y  i s  taken t o  be cons tan t  a t  1 

gm/cm3. The Navier-Stokes equa t ions  f o r  the dimensionless  v a r i a b l e s  a r e  used 

i n  the  r o t a t i o n  form 

(1 1 1 T u + w x _u = -VP + - v + v,u ) ]  + zu - -t - R e  
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. .  
8, + _u ve = - - V  1 1  ( K V e )  + Fe P r  R e  

v * u = o  - 

- -  
K = K/K, , 

= - - - -  i i a  a e O  
Fe P r  Re ay  ( K ~  F )  

- 
and Cp(T) i s  held f ixed  a t  i t s  value a t  Too. The fo rc ing  func t ions  F 

and Fe 

’u 
are app l i ed  f o r  cons is tency  wi th  the para l le l  f low assumption. 

The boundary cond i t ions  are 

u = o  - 
e = i  

u = (1 ,0 ,0)  

e = o  
- 

a t  y =  0 

a t  y = -  

along with p e r i o d i c i t y  i n  x with per iod L and p e r i o d i c i t y  i n  z with  

per iod L . The empir ica l  formulas employed a r e  those  recommended by Lowell 

and Reshotko (1974): 

X 

z 

- 
P ( T >  = 1.002 10- ‘(‘1 x gm/cm-sec 

r(T) = I 1..370 + 8.36 x 10-4(T-293) 1 (T-293)/(T-164) 
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-4 - -7 -3 ;(?) = [-9.901 + 0.1002 T - 1.874 x 10 T + 1.040 x 10 T ] x 

j oule/se c-cm-OK 

+ 2.69 T - 2.42 T 3 1  -3 - T - 
Cp(?) = [2.140 - 9.68 x 10 

(6 1 x 4.184 joule/gm - OK, 

- 
where T is in OK. The Prandtl number characteristic of water is Pr = 

7 .  
- 

A l l  of the results in this paper are for ToD = 293OK and €or 

1 < T < 1.1. varies by less than 0.1% and the 

density is within 1% of being constant. On the other hand, u ( T )  changes 

by as much as 50% and K(?) by nearly 7%. Note that viscous dissipation has 

been neglected in the temperature equation. This is a small correction in the 

heated cases considered below, which have Eckert numbers 

smaller than The term V*(uVfiT) vanishes if u is constant (in x) 

and has only a minor effect (below the 1% level) on the heated cases, as 

determined by comparing simulations made both with and without this term. 

Over this range Fp(T) 
- 

[G: / ( e  (Tw-Tm))] p, 

- 

One of the Reynolds numbers chosen for the present investigation of non- 

linear stability was 8950. (Some linear theory results were reported f o r  this 

Reynolds number by Lowell and Reshotko (19741.) The free stream temperature 

was 293OK. The amounts of pressure gradient, suction, and heating were 

chosen so that the flow was neutrally stable. (The linear theory results for 

I the heated case did not include the temperature fluctuations.) The mean flows 

of both the controlled and uncontrolled cases are displayed in Figure 5, and 
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the  parameters of t h e  leas t  s t a b l e  2-D modes are included i n  Table 1. The 

c h a r a c t e r i s t i c s  of the l eas t  s t a b l e  l i n e a r  modes of t he  heated case d i f f e r  

apprec i ab ly  from those of the p re s su re  g r a d i e n t  and s u c t i o n  c o n t r o l s .  As was 

observed by Wazzan, e t  a l . ,  t h e r e  a r e  d e s t a b i l i z i n g  e f f e c t s  i n  the heated case 

due t o  t h e  v e r t i c a l  g r a d i e n t s  of 1-1 and K .  

The use of the LFC techniques has a dramatic  e f f e c t  upon t h e  a c t u a l  d i s -  

placement th i ckness  of the boundary l a y e r .  This  i s  q u a n t i f i e d  i n  Table 2. 

The Reynolds number based on t h e  displacement th i ckness  of t h e  corresponding 

uncon t ro l l ed  boundary l a y e r  i s  a l s o  l i s t e d  t h e r e .  Note t h a t  i n  terms o f  the 

growing boundary l a y e r ,  t h e  c o n t r o l l e d  c a s e s  correspond t o  d i f f e r e n t  posi- 

t i o n s  xo, wi th  the p re s su re  g r a d i e n t  case having the g r e a t e s t  d i s t a n c e  from 

t h e  l ead ing  edge and the uncontrol led case  the  l e a s t .  

Most non l inea r  t r a n s i t i o n  c a l c u l a t i o n s  have used i n i t i a l  cond i t ions  con- 

s i s t i n g  o f  t he  mean flow, p l u s  a two-dimensional TS wave and two three-  

dimensional (ob l ique )  waves : 

i [  ( ax / sx )x+crz~ l  1 + 
2 3D-3D + - E  u ( y > e  

where u and u* ( y >  a r e  the leas t  s t a b l e  l i n e a r  modes f o r  the 

g iven  r e a l  wavenumbers ax and a z ,  and the  i n t e g e r  sx i s  1 o r  2. These 

e i g e n f u n c t i o n s  a r e  normalized so t h a t  t h e i r  maximum streamwlse ampli tudes a r e  

1. The 3-D waves a r e  e i t h e r  themselves TS waves ( s o l u t i o n s  t o  the O r r -  

-2D(y) - 3D 
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Sommerfeld equat ion)  o r  else Squire  modes (eigenmodes of t he  v e r t i c a l  v o r t i c i -  

t y  equa t ion  (Herber t  (1983)) .  This  p a r t i c u l a r  combination of 3-D modes, with 

gene ra t e s  streamwise v o r t i c i t y  p a t t e r n s  t h a t  
2’ 

waves a and - a  

resemble those  of  the Benney-Lin (1960) mechanism. 

z 

Numerical Methods 

I n  t h i s  work, numerical  methods a r e  needed f o r  t h r e e  problems. The mean 

f low i s  ca l cu la t ed  from the  Falkner-Skan boundary l a y e r  equa t ions  v i a  a 

four th-order  f i n i t e - d i f f e r e n c e  scheme (Malik,  Chuang, and Hussaini  (1  982)) .  

The l i n e a r  eigenmodes (and l i n e a r  s t a b i l i t y  p r o p e r t i e s )  a r e  computed by a 

Chebyshev t a u  method (Orszag (1971) ) .  The mean flow and the l i n e a r  eigenfunc- 

t i o n s  a r e  used fo r  t he  i n i t i a l  cond i t ions  of  t h e  d i r e c t  s imulat ion.  

The time dependent Navier-Stokes equa t ions  a r e  solved by a Fourier-  

Chebyshev c o l l o c a t i o n  method, using Four ie r  s e r i e s  i n  x and z and 

Chebyshev polynomials (wi th  an a l g e b r a i c  s t r e t c h i n g )  i n  y. The v e l o c i t y  has  

the  Four i e r  series r e p r e s e n t a t i o n  

N X /2-1 N X /2-1 

- u(_x,t> = 1 c 
A 

kx=-Nx / 2  kx=-Nx / 2  

A A 

where a and a are the fundamental wavenumbers i n  the streamwise and 

spanwise d i r e c t i o n s  r e s p e c t i v e l y .  The fundamental wavelengths i n  these  d i rec-  

t i o n s  a r e  g iven  by L = 2n /a  and Lz = 2n/az ,  r e spec t ive ly .  The i m -  

posed p e r i o d i c i t y  l e n g t h s  a r e  sx& and s Z L z ,  where sx and s z  are 

X z 

X X 
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integers which specify the number of subharmonics that are permitted in each 

direction. (In most cases presented in this paper sx - - s z  = 1.) The 
A A 

rational numbers k = kx/sx and kZ = kZ/sz label the Fourier wave- 
X 

numbers in the numerical representations with respect to the fundamental wave- 

numbers u and B .  The velocity also has the Chebyshev series represen- 

tation 
N" 

where a mapping y = y(S) is employed from [-1,1] to (0,m). Of course, a 

fully Fourier-Chebyshev representation is also available. The notation is 

straightforward: a triple sum over kx, n, k, with respect to the coef- 

ficients u times the Fourier-Chebyshev basis functions. 
N 

kx,n,k Z 
The algorithm used for the boundary-layer simulations is based upon the 

improved splitting method devised by Zang and Hussaini (1986) for channel flow 

simulations. The first (velocity) step accounts for the advection and diffu- 

sion terms. Although the simulations presented in this paper used the rota- 

tion form of the incompressible Navier-Stokes equations, recent work indicates 

that the skew-symmetric form is more accurate (see Zang (1988)). The advec- 

tion and horizontal diffusion terms are advanced in time via a low-storage 

third-order Runge-Kutta method while the normal viscous term is advanced with 

a Crank-Nicolson method. (The temperature equation is also integrated in this 

step.) The second (pressure) step enforces the incompressibility con- 

straint. The boundary conditions in the velocity step are chosen to minimize 

the slip velocity which is present after the pressure step. More details are 

given by Zang and Hussaini (1986). Chapter 7 of the book by Canuto, Hussaini, 

Quarteroni, and Zang (1988) contains an exhaustive discussion of spectral 

methods for simulations of incompressible flow. 
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Several  a s p e c t s  of t h e  boundary-layer implementation of t h i s  a lgor i thm 

are  worth not ing .  Asymptotic boundary cond i t ions  (Malik,  Zang, and Hussaini  

(1985)) were enforced a t  y = ymax by r equ i r ing  t h a t  

In p r a c t i c e ,  t he  choice ymax = 15 has s u f f i c e d  t o  y i e ld  numerical s o l u t i o n s  

w i t h  no d i s c e r n i b l e  spur ious  boundary e f f e c t s .  Had zero pe r tu rba t ion  boundary 

cond i t ions  been appl ied  i n s t e a d ,  a s u b s t a n t i a l l y  l a r g e r  va lue  of ymax would 

have been required t o  y i e l d  comparable s o l u t i o n s .  

An a1  t e r n a t  i v e  t o  t h i s  domain t r u n c a t  i on /a s  ymptot i c  boundary cond i t ion  

approach i s  the  use of a mapping from 5 e [0,1] to  y E [O,-) --see 

S p a l a r t  (1986) and Laurien (1986). However, the present  a lgori thm employs a 

s taggered  g r i d  f o r  the  p r e s s u r e ,  and f o r  t h i s  a l t e r n a t i v e  mapping i t  would 

r e q u i r e  t h a t  ma t r ix  m u l t i p l i e s  be used i n  p l ace  of F a s t  Four ie r  Transforms i n  

s e v e r a l  key l o c a t i o n s  i n  the code. As documented by Canuto, e t  a l .  (1988, 

Chapter 2 ) ,  t h i s  would s i g n i f i c a n t l y  i n c r e a s e  t h e  run t ime of t h e  code, 

e s p e c i a l l y  f o r  s imula t ions  employing over 128 g r i d  po in t s  i n  the  normal d i rec-  

t i o n .  Moreover, the  small va lue  of ymax made poss ib l e  by the use of  

asymptot ic  boundary cond i t ions  l e a d s  t o  the presence of r e l a t i v e l y  few g r i d  

p o i n t s  o u t s i d e  of t he  boundary l a y e r .  

Both the a l g e b r a i c  s t r e t c h i n g  

G = 1 + 2yL/ym, 
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l 

and t h e  exponent ia l  s t r e t c h i n g  

‘Y ’ YL 
5 = ae + b  y = -yL log(,.) 6-b 

were considered.  The a lgeb ra i c  s t r e t c h i n g  i s  more robust  f o r  s p e c t r a l  algo- 

r i thms:  i t  y i e l d s  s p e c t r a l  accuracy f o r  s o l u t i o n s  which decay on ly  alge-  

b r a i c a l l y  f a s t ,  a s  y + m ,  whereas t h e  exponent ia l  s t r e t c h i n g  r e q u i r e s  expo- 

n e n t i a l  decay t o  achieve  s p e c t r a l  accuracy ( s e e  Canuto, e t  a l .  (1988, Ch. 2)). 

These mappings c l u s t e r  t he  g r i d  po in t s  near  the  wal l .  I n  t h e  l i n e a r  and 

e a r l y  secondary i n s t a b i l i t y  s t a g e s  the  g r e a t e s t  need f o r  r e s o l u t i o n  i s  near  

I the  wall. and i n  t h e  c r i t i c a l  l a y e r  near y = 0.6 ( i n  u n i t s  of displacement  

t h i c k n e s s ) .  However, as  the  t e r t i a r y  i n s t a b i l i t y  deve lops ,  i .e ., a s  the  

lambda vo r t ex  and detached shea r  l a y e r  i n t e n s i f y ,  a d d i t i o n a l  r e s o l u t i o n  i s  

I 
I requi red  near  the  l o c a t i o n  of t he  shea r  l a y e r ,  which rises toward the f r e e  

I 
stream a s  i t  breaks  down. In  t h e s e  l a t e r  s t a g e s  of  t r a n s i t i o n  i t  i s  ad- 

vantageous t o  compose the  above mappings with a mapping from n E: [ - 1 , l l  

t o  5 E [-1,1] which has  the  e f f e c t  of  c l u s t e r i n g  g r i d  p o i n t s  nea r ,  s ay ,  y 

= 3. We have employed a hyperbol ic  tangent  mapping of the  form 

a 

where E o ,  A 5  , r l o ,  An, and u a r e  chosen t o  provide t h e  d e s i r e d  c l u s t e r  , 
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ing. This  combined mapping i s  r e a d i l y  accommodated w i t i n  the  spec t ra l  

c o l l o c a t i o n  method. 

The c o l l o c a t i o n  g r i d s  ranged from 16 x 4 8  t o  6 4  x 6 4  ( i n  x and y) 

f o r  the  2-D cases  and from 16 x 48  x 8 t o  64 x 64 x 16 ( i n  x ,  y ,  and z) 

f o r  the  3-D secondary i n s t a b i l i t y  s t u d i e s .  Typical  s imula t ions  took s e v e r a l  

thousand t ime-steps and covered from two t o  f i v e  per iods  of the  primary 2-D TS 

wave. The s imula t ions  of  t he  t e r t i a r y  i n s t a b i l i t y  took i n  excess  of  lo6 

t o t a l  g r i d  poin ts .  I n  a l l  ca ses  the  g r i d  w a s  r e f ined  dur ing  t h e  evo lu t ion  of 

the  i n s t a b i l i t y  so a s  t o  main ta in  a decrease  of 8 orde r s  of magnitude i n  the  

energy s p e c t r a  i n  each coord ina te  d i r e c t i o n  (see K r i s t  and Zang ( 1 9 8 7 ) ) .  The 

use of t he  a d d i t i o n a l  mapping (13) enabled the  t e r t i a r y  i n s t a b i l i t y  simula- 

t i o n s  t o  be performed wi th  less than ha l f  the p o i n t s  i n  y t h a t  would o ther -  

wise have been requi red .  

A u s e f u l  measure of t h e  s t r e n g t h  of a g iven  Four i e r  harmonic i s  

E ( t )  = d d I 
kx SkZ kx kZ 0 kx 'kZ 

whe re 

&kO' d = 2 -  
k 

This q u a n t i t y  i s  the  k i n e t i c  energy of  the  mode normalized by the  k i n e t i c  

energy of t h e  mean f low (Eo) between y = 0 and y = ymax- The cons t an t  

dk i s  used t o  account f o r  the symmetries i n  the  Four ie r  harmonics. Similar-  

l y ,  a measure of a given Chebyshev component i s  
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S L  S L  x x  z z  2 N 

un(x , z , t ) l  dxdz 

The accuracy of  t he  f u l l y  non-linear , time-dependent Navier-Stokes code 

i s  documented i n  Table 1. For each of the  l i n e a r  modes s p e c i f i e d  i n  the f i r s t  

f o u r  columns, a h igh ly  accu ra t e  temporal e igenvalue  w and e igen func t ion  

were genera ted  using the  Chebyshev t a u  code. This  e igenfunct ion  was then in- 

put  a t  very  low ampli tude i n t o  the  non-l inear  code a s  the  i n i t a l  condi t ion .  

The code was run f o r  two TS per iods  and the  growth ra te  of  t he  e igenfunct ion  

was measured. This  i s  l i s t e d  i n  the l a s t  column. L i s t ed  next t o  i t  i s  the  

growth r a t e  ( imaginary p a r t  of  w )  produced by t h e  l i n e a r  s t a b i l i t y  code. 

T h i s  growth r a t e  i s  e f f e c t i v e l y  zero--the r e a l  p a r t  of w i s  roughly 

0.04. Keeping i n  mind the  s i z e  of  t he  real  p a r t  of w ,  i t  i s  c l e a r  from the  

t a b l e  t h a t  the  non-linear code i s  accura t e  t o  four  o r  f i v e  d i g i t s .  

F i n i t e  Amplitude 'Itro-Dimensional Dis turbances  

F igu re  6 ,  t aken  from Lowell and Reshotko (1974), compares the  n e u t r a l  

I s t a b i l i t y  curves  t h a t  ensue under hea t ing  c o n t r o l  fo r  Tm = 60°F when t h e  

temperature  i s  allowed t o  f l u c t u a t e  ( s o l i d  l i n e s )  and when i t  i s  held f ixed  a t  

i t s  mean va lue  (dashed l i n e s ) .  Note t h a t  t he  boundary l a y e r  i s  a c t u a l l y  more 

s t a b l e  than i s  suggested by l i n e a r  theory  c a l c u l a t i o n s  which neg lec t  tempera- 

t u r e  f l u c t u a t i o n s .  Note a l s o  t h a t  a l though the  flow i n i t i a l l y  becomes more 

s t a b l e  as the  w a l l  i s  hea ted ,  i t s  s t a b i l i t y  e v e n t u a l l y  degrades with addi t ion-  

a l  wal l  hea t ing .  Lowell and Reshotko have performed f u r t h e r  c a l c u l a t i o n s  i n  
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which t h e  e f f e c t s  of t h e  temperature upon t h e  d e n s i t y  a r e  included.  They 

found t h a t  t h i s  e f f e c t  moves the n e u t r a l  s t a b i l i t y  curves t o  the  l e f t ,  e.g., 

f o r  t h e  Tw = 90°F case ,  t he  s o l i d  curve moves one-third of t he  d i s t a n c e  t o  

t h e  dashed curve when d e n s i t y  f l u c t u a t i o n s  a r e  admitted.  

The f i r s t  s e t  of r e s u l t s  p e r t a i n s  t o  f i n i t e  amplitude e f f e c t s  upon 2-D TS 

waves f o r  a Re = 8950 boundary l a y e r  sub jec t ed  t o  p re s su re  g r a d i e n t  o r  heat-  

i n g  c o n t r o l .  The amount of c o n t r o l  app l i ed  and the wavenumber of t h e  l e a s t  

s t a b l e  mode a r e  included i n  Table 1. The c o n t r o l  l e v e l  was chosen t o  y i e l d  a 

growth r a t e  of 0.0001 f o r  t h e  l e a s t  s t a b l e  2-D TS wave. Resul ts  of simula- 

t i o n s  f o r  which t h e  i n i t i a l  amplitude of t h e  3-D wave was zero and t h e  i n i t i a l  

amplitude of the 2-D wave was 1/2,  1, 2 ,  and 4% a r e  summarized i n  Figure 7.  

Suct ion c o n t r o l  y i e l d s  behavior s i m i l a r  t o  t h a t  f o r  p re s su re  g r a d i e n t  c o n t r o l  

(Zang and Hussaini  (1985b)) and i s  t h e r e f o r e  not  given. Two types of h e a t i n g  

c o n t r o l  s imula t ions  were performed: i n  one case the  temperature was held 

f i x e d  a t  i ts  i n i t i a l  mean va lue  (corresponding t o  t h e  l i n e a r  theory s tudy of 

Wazzan, e t  a l .  (1968)) ,  and i n  t h e  o t h e r  t h e  temperature f l u c t u a t i o n s  were 

p rope r ly  accounted f o r  ( a s  i n  t h e  work of Lowell and Reshotko (1974)). The 

i n i t i a l  cond i t ions  f o r  both types of h e a t i n g  s imula t ions ,  however, were 

i d e n t i c a l .  

The s t r e n g t h  of t he  p e r t u r b a t i o n  a t  any i n s t a n t  i s  measured here  by the  

k i n e t i c  energy E l , ~ ( t )  of t h e  fundamental Four i e r  component of the v e l o c i t y  

f i e l d .  The r a t i o  El ,O(t) /E1,O(0)  i s  p l o t t e d  on a semi-log s c a l e  i n  Figure 

7 ,  wi th  t h e  t i n e  measured i n  u n i t s  of t h e  per iod of t he  2-D TS wave. Thus, 

one i n d i c a t i o n  of t he  impact of non-linear e f f e c t s  i s  the  depa r tu re  of t he  

curves from a s t r a i g h t  (and n e a r l y  h o r i z o n t a l )  l i n e .  Another i s  the  f a i l u r e  

of t he  curves t o  l i e  on top of each o the r .  
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I n  a l l  cases, the  i n i t i a l  growth of  the  2-D TS wave i s  f a s t e r  than ex- 

p o n e n t i a l .  Note t h a t  i n  the non-l inear  regime the  heated boundary l a y e r  

appears  t o  be  less s t a b l e ,  i .e . ,  subjec ted  t o  f a s t e r  growth of  the  2-D wave, 

when temperature  f l u c t u a t l o n s  a r e  included.  This i s  p r e c i s e l y  the  oppos i te  of 

how temperature  f l u c t u a t i o n s  a f f e c t  t h e  l i n e a r  s t a b i l i t y  r e s u l t s .  It i s  a l s o  

apparent  t h a t  non-l inear  e f f e c t s  lead  t o  a more rapid d e s t a b i l i z a t i o n  of a 

water  boundary l a y e r  con t ro l l ed  by hea t ing  than one c o n t r o l l e d  by p res su re  

g r a d i e n t .  As w i l l  be shown below, i t  i s  the convect ion r a t h e r  than the  con- 

duc t ion  terms i n  the  temperature equat ion  which a r e  most r e spons ib l e  f o r  t h i s  

d e- s t a b  il i za t ion.  

Tables  3 and 4 summarize the  depa r tu re  from l i n e a r  growth f o r  2-D waves 

wi th  i n i t i a l  ampli tudes of 1/2X and 2%. The numbers g i v e  the  r a t i o s  ( a f t e r  1,  

2,  and 3 TS pe r iods )  of t he  a c t u a l  amplitude of t he  2-D wave t o  t h a t  g iven  by 

l i n e a r  theory.  These numbers, of  course ,  j u s t  r e i n f o r c e  the  d a t a  presented i n  

F igure  7. 

Secondary Instability 

The next  p a r t  of t h i s  i n v e s t i g a t i o n  focuses  on f i n i t e  ampli tude e f f e c t s  

upon the  secondary i n s t a b i l i t y  of  the  primary 2-D wave t o  small ,  3-D per turba-  

t i o n s .  The secondary i n s t a b i l i t i e s  may be  ca tegor ized  as fundamental o r  sub- 

harmonic. These a r e  i d e n t i f i e d  i n  flow v i s u a l i z a t i o n s  of  t h e  e a r l y  three-  

dimensional  s t a g e  of t r a n s i t i o n  as e i t h e r  ordered o r  s taggered a r r a y s  of  

lambda v o r t i c e s  (Knapp and Roache (1968)) ,  and have been explained by Floquet  

t heo ry  (Herber t  (1984)) .  Figure 8 ske tches  the  pe r iod ic  a r r a y  of v o r t i c e s  

a s s o c i a t e d  wi th  these  secondary i n s t a b i l i t i e s .  The d i s t a n c e  Lx i s  the  

l e n g t h  of t h e  primary 2-D TS wave. 



-1 6 -  

The 3-D waves t h a t  lead  t o  the  fundamental i n s t a b i l i t y  are TS waves, 

i .e., s o l u t i o n s  t o  the Orr-Sommerfeld equat ion ,  whereas the  subharmonic in- 

s t a b i l i t y  a r i s e s  from t h e  i n t e r a c t i o n  o €  the 2-D wave with a s o l u t i o n  of  t h e  

v e r t i c a l  v o r t i c i t y  ( o r  Squire)  equat ion  with streamwise wavenumber ax/2. 

These so-cal led Squire  modes a r e  a l l  l i n e a r l y  s t a b l e .  

F igure  9 summarizes the  resul ts  of numerical  s imula t ions  of t he  secondary 

i n s t a b i l i t y  of  c o n t r o l l e d  boundary l a y e r s  under the  same R e  = 8950 condi- 

t i o n s  used fo r  the  2-D s imu la t ions .  The i n i t i a l  phases of the  3-D TS wave and 

the  Squire  waves were, r e s p e c t i v e l y ,  39O behind and 4O behind the 2-D TS wave 

f o r  the p re s su re  g r a d i e n t  case .  For the heated c a s e s ,  t h e  3-D wave w a s  45' 

behind and the  Squire  wave 7O ahead. The phase of each w a v e  i s  judged by the  

l o c a t i o n  of t he  maximum i n  the  streamwise v e l o c i t y  pe r tu rba t ion .  In all 

c a s e s ,  t h e  i n i t i a l  3-D amplitude was 0.01% and the  i n i t i a l  2-D amplitude 

va r i ed  between 1/2% and 4%. In these  p l o t s ,  t h e  k i n e t i c  energy i s  shown f o r  

the  2-D Four i e r  component ( s , k z >  = (1,O) and f o r  t he  appropr i a t e  3-D 

component--(l, 1 )  f o r  the fundamental i n s t a b i l i t y  and (1 /2 ,1 )  f o r  the  sub- 

harmonic. The 3-D curves  a r e  l abe led  by t h e  ampli tude of the 2-D wave f o r  t h e  

s imula t ion .  

The secondary i n s t a b i l i t i e s  have t h e  same gene ra l  c h a r a c t e r  here  t h a t  

they do i n  uncont ro l led  boundary l a y e r s :  they are t r igge red  by 2-D ampli tudes 

on the  o rde r  of 1% or  more; t h e i r  growth r a t e  i n c r e a s e s  with the  2-D ampl i -  

t ude ;  they  grow much f a s t e r  than the  primary wave; and the  fundamental and 

subharmonic i n s t a b i l i t i e s  have comparable growth rates.  

Among these  t h r e e  c a s e s ,  the  secondary i n s t a b i l i t y  i s  s t r o n g e s t  f o r  the 

hea ted  boundary l a y e r  s imula t ion  which inc ludes  temperature  f l u c t u a t i o n s .  But 

t h e  more r ap id  growth of  the  3-D waves i n  t h i s  case  i s  c l e a r l y  t i e d  t o  the  



I 

more r ap id  growth of  the  2-D wave. Hence, the  p r i n c i p a l  e f f e c t  of  t h e  

temperature  f l u c t u a t i o n s  is upon the  2-D waves. 
I 

I 

T o m r d s  the T e r t i a r y  Ins tab i l i ty  

W e  now seek  t o  determine the  e f f e c t  of LFC techniques  on the  formation of 

t h e  lambda vo r t ex  and of  t h e  detached shea r  l a y e r  whose ro l l -up  i n t o  h a i r p i n  

e d d i e s  is be l i eved  r e spons ib l e  f o r  the  t e r t i a r y  i n s t a b i l i t y .  Our comparisons 

w i l l  be made wi th  the R e  = 1100 experiment of Kovasznay, Komoda, and 

Vasudeva (19621, r e f e r r e d  t o  h e r e a f t e r  a s  KKV, i n  which d e t a i l e d  measurments 

were made of  t h e  detached shea r  l a y e r  r e s u l t i n g  from a fundamental mode 

t r a n s i t i o n .  The b a s i c  parameters of the  s imula t ions  are l i s t e d  i n  Table 5. 

The magnitudes o f  the  p re s su re  g r a d i e n t  and hea t ing  c o n t r o l s  were chosen so 

t h a t  each provides  a 7 %  decay i n  the  ampli tude of t he  v e l o c i t y  f l u c t u a t i o n  of 

the  2-D TS wave i n  a s i n g l e  period. The c o n t r o l s  here  are so weak t h a t  the TS 

per iod of t he  heated case is on ly  2% longer  than those of t he  uncontol led and 

p res su re  g r a d i e n t  cases. 

C l e a r l y ,  t h e  secondary i n s t a b i l i t y  e x i s t s  f o r  the  uncont ro l led  case ,  re- 

g a r d l e s s  o f  t he  i n i t i a l  amplitude o f  t he  uns tab le  2-D wave, because the 2-D 

wave w i l l  e v e n t u a l l y  grow s u f f i c i e n t l y  l a r g e  t o  t r i g g e r  the  exp los ive  growth 

of 3-D waves. A parametr ic  s tudy  of  t h e  c o n t r o l l e d  c a s e s  r e v e a l s  t h a t  t he  

th re sho ld  i n i t i a l  2-D ampli tude f o r  the  onse t  of  t he  secondary i n s t a b i l i t y  is 

approximately 1.5% f o r  both p re s su re  g r a d i e n t  and ( f i x e d  temperature)  hea t ing  

c o n t r o l .  
, 

The i n i t i a l  ampli tudes used by Wray and Hussaini  (1984) i n  t h e i r  numeri- I 

cal  s imula t ion  of  the  KKV experiment were c 2  = 0.018 and c 3  = .008. These 



have been adopted i n  the  p re sen t  r epea t  of t h e i r  s imula t ion  of t h e  uncon- 

t r o l l e d  case.  A t  t = 0 t h e  3-D wave i s  36' behind the  2-D wave. A time 

h i s t o r y  of t h e  low-order Four i e r  components of t h i s  case i s  shown i n  Figure 

10. Both the  2-D and 3-D TS waves ( l a b e l e d  (1,O) and ( 1 , l )  r e s p e c t i v e l y  i n  

the  f i g u r e )  a r e  l i n e a r l y  uns t ab le .  The 2-D TS wave grows a t  n e a r l y  i t s  l i n e a r  

r a t e  f o r  more than 3 pe r iods .  The 3-D TS wave i n i t i a l l y  grows a t  i t s  l i n e a r  

r a t e ,  but s h o r t l y  commences a f a r  more r ap id  growth due t o  the  secondary 

i n s t a b i l i t y .  Before t h e  end of t he  f o u r t h  TS per iod the  flow i s  s t r o n g l y  

three-dimensional,  as evidenced he re  by t h e  presence of Four i e r  harmonics-- 

( 1 , l )  and (0,2)--which have l a r g e r  amplitudes than the primary 2-D waves. 

This f i g u r e  a l s o  f u r n i s h e s  a comparison w i t h  two c o n t r o l l e d  cases ,  one 

w i t h  p re s su re  g r a d i e n t  and ano the r  with hea t ing .  I n  the  l a t t e r  s imula t ion ,  

temperature  f l u c t u a t i o n s  were excluded. The 3-D waves were 40° behind the 2-D 

waves i n  both cases .  For each c o n t r o l l e d  flow, both TS waves are l i n e a r l y  

damped. The secondary i n s t a b i l i t y  i s  e v i d e n t ,  a l though i t  i s  s u b s t a n t i a l l y  

weaker than i t  i s  f o r  t h e  uncon t ro l l ed  boundary l a y e r .  Indeed, i t  is  not 

u n t i l  t h e  seventh TS per iod t h a t  t h e  c o n t r o l l e d  flows became predominantly 

three-dimensional.  The reduced s t r e n g t h  of t he  secondary i n s t a b i l i t y  i s  due 

p a r t l y  t o  t h e  improved s t a b i l i t y  of t h e  c o n t r o l l e d  mean flow p r o f i l e  and 

p a r t l y  t o  the  decay of t h e  2-D TS waves. A f t e r  1 p e r i o d ,  t he  uncontrol led 2-D 

TS wave has an amplitude of 2.3%, compared with t h e  1.7% amplitude of t he  

c o n t r o l l e d  cases  a t  t he  same time. 

The maximum p e r t u r b a t i o n s  occur i n  the  so-cal led "peak plane," which is  

t h e  symmetry plane ( i n  t h e  spanwise d i r e c t i o n ) .  The improvement produced by 

t h e  LPC techniques i s  emphasized by the  p l o t s  of v e r t i c a l  shea r  i n  the  peak 

plane a f t e r  roughly f o u r  pe r iods  (Figure 11). The detached shea r  l a y e r  i n  t h e  
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uncontrolled case is quite distinct and already has the sharp kink character- 

istic of the "one-spike" stage (KKV). The controlled flows are still so early 

in the transition process that the detached shear layer has not yet developed. 

Another set of simulations has been performed to illustrate the effect of 

temperature fluctuations. The example for this comparison will be the same as 

the previous case except that E = 0.027 instead of 0.018. The increased 

amplitude of the primary wave permits the strong detached shear layer to form 

by t = 4 in the controlled cases. The results are given in Figure 12 and 

include calculations for Pr = 1 as well as Pr = 7.0. 

2 

In all three cases shown in Figure 12, the flow becomes predominantly 

three-dimensional during the fourth TS period. (In the uncontrolled case 

with c 2  = .027, this occurs during the third period.) The larger 2-D 

amplitude of the initial conditions for the present cases compensates for the 

enhanced stability of their mean flow profiles. 

Notice once again that temperature perturbations have a substantial, 

destabilizing effect. This is especially so for the realistic case with 

Pr = 7. The comparison case with Pr = 1 has a higher conductivity and thus 

has faster damping of temperature fluctuations. Apparently the destabilizing 

effects of the temperature fluctuations are due to convection, since the flow 

is more stable as the conductivity is increased. Figure 13 illustrates the 

differences in the formation of the detached shear layers in these cases. 

The characteristic lambda vortex and detached shear layer structures of 

the K-type transition have been documented experimentally by Williams, Fasel, 

and Hama (1984) for an uncontrolled boundary layer. Detailed mappings of it 

have been provided by Krist and Zang (1987) in their numerical simulations of 

both sub-critical and super-critical channel flow transitions. Here we focus 
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on relating the temperature fluctuations to the lambda vortex and the detached 

shear layer. 

Figures 14 and 15 illustrate the flow fields which develop at an advanced 

stage of the fundamental secondary instability in an uncontrolled and a heated 

boundary layer. The former case had an initial 2-D amplitude of 1.8% and is 

shown in Figure 14 at t = 3 - from a calculation on a 96 x 96 x 192 grid. 

The initial 2-D amplitude of the heated case was 2.7%; it is shown in Figure 

7 
8 

1 5 a t  t'4.i; and the grid was 96 x 162 x 216. The flat plate is indi- 

cated by the solid surface and the mean flow is from the lower right to the 

upper left. The peak plane is located in the middle of the spanwise direction 

in these figures. 

The flow field is particularly clear in the case of the uncontrolled 

boundary layer. The vortex lines in Figure 14 indicate the presence of a 

lambda vortex suggest the emergence of a hairpin eddy at the vortex tip, and 

demonstrate the existence of the inverted vortex which has been observed ex- 

perimentally (Williams (1987)). The inverted vortex is a structure 'character- 

ized by vortex lines which bend upstream and down towards the wall. It is 

located in the vicinity of the critical layer about a third of a wavelength 

upstream of the tip of the principal vortex, and just underneath the start of 

the detached shear layer. Zang, Krist, Erlebacher, and Hussaini (1987) have 

discussed the physical origin of this structure in transitional flows. The 

spanwise vorticity displays the strong detached shear layer which forms on top 

of the vortex. The normal velocity contours indicate the regions in which low 

speed fluid from the wall region is ejected upward towards the free stream. 

The peak plane is located at the center of the hairpin vortex. In this plane, 

the detached shear layer is strongest and the upward normal velocity is most 

intense. 
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The f low f i e l d  of the  heated case  i s  q u i t e  s i m i l a r ,  a l though the  lambda 

v o r t i c e s  and detached shear  l a y e r s  a r e  less i n t e n s e  i n  t h i s  more s t a b l e  

flow. Of s p e c i a l  i n t e r e s t  i n  Figure 15 are t h e  contours  of  t he  temperature  

p e r t u r b a t i o n .  They r ep resen t  the  l o c a l  depa r tu re  from the  mean temperature .  

Note t h a t  the  temperature  f l u c t u a t i o n s  a r e  s t r o n g l y  c o r r e l a t e d  with the  normal 

v e l o c i t y .  There i s  a temperature  inc rease  i n  the  peak p l ane ,  where hot  f l u i d  

i s  convected upwards, and an  even s t ronge r  temperature  dec rease  near  the  wal l  

on the  o u t e r  reg ions  of the  l e g s  o f  the  lambda v o r t e x ,  where cold f l u i d  i s  

convected downwards. 

Will iams introduced a f i n i t e  ampli tude 2-D TS wave by means of a v i b r a t -  

i ng  r ibbon and l e t  the  three-dimensional s t r u c t u r e  develop from random 

p e r t u r b a t i o n s  i n  the  flow. The p resen t  numerical  s imula t ion  used r e g u l a r ,  

non-noisy i n i t i a l  cond i t ions  i n  the  form of a 2-D TS wave and two obl ique  3-D 

waves. Thus, t h e  f low-field s t r u c t u r e s  i n  the  s imula t ions  a r e  more r e g u l a r  

and y i e l d  f i n e r  d e t a i l  on t h e  dynamics of t h e  lambda vo r t ex  and t h e  detached 

shea r  l a y e r .  

The Role of bngitudinal Vortices 

Severa l  r ecen t  experiments on the  c o n t r o l  of boundary-layer t r a n s i t i o n  

have r e s o r t e d  t o  t he  p r i n c i p l e  of wave supe rpos i t i on  t o  d e l a y  t r a n s i t i o n .  

They have employed e i t h e r  a v i b r a t i n g  r ibbon (Mi l l ing  (19811, Thomas (1983))  

o r  e l s e  a hea t ing  element (Liepmann, Brown, and Nosenchuck (1982)) t o  in t ro -  

duce a 2-D TS wave, and a second c o n t r o l  element some d i s t a n c e  downstream of 

the  f i r s t  t o  i n t roduce  a second 2-D TS wave which was tuned i n  amplitude and 

phase t o  cance l  out a s  much of t he  evolved TS wave as poss ib l e .  The d e l a y  i n  
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transition occurred because the reduced amplitude of the 2-D TS wave resulted 

in a decreased strength of the nonlinear instabilities which lead to transi- 

tion. 

Liepmann and Nosenchuck (1982) have implemented a feedback control mecha- 

nism to drive their second heating element. Their sensor was able to detect 

both 2-D TS waves deliberately excited by an upstream heating element and 

naturally occurring 2-D TS waves. They demonstrated that both artificial and 

natural transition can be delayed by such a control mechanism. 

Several numerical experiments, for example, by Kleiser and Laurien 

(1984),  and Laurien (19861, have simulated LFC wave superposition produced by 

suction. These results are similar to those of the experiments described 

above. 

Both the experiments and the simulation have focused on the control of 

the 2-D TS wave. The secondary instability involves other waves as well, 

notably the two oblique 3-D TS waves and the spanwise mode (kx,kz) = ( 0 , l ) .  

The simplest and apparently the strongest secondary instability mechanism in- 

volves the ( l , O ) ,  ( 1 , l )  + ( l , - l ) ,  and ( 0 , l )  modes. The 2-D TS wave is by far 

the most energetic of these. Rut the possibility exists that control of one 

of the remaining modes might prove equally effective in delaying transition. 

Zang and Hussaini (1985a) demonstrated that control of the spanwise mode 

did indeed delay transition. This demonstration consisted of a series of nu- 

merical simulations in which the usual initial conditions were employed, but 

in which the ( 0 , l )  mode was artificially and completely suppressed at each 

time step. This artifice is not completely physically realizable, of course, 

but it is a first step in analyzing the effectiveness of spanwise mode 

suppression. 
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Most of  t he  numerical  s imula t ions  repor ted  the re  were f o r  channel flow. 

The r e s u l t s  i nd ica t ed  t h a t  a t  low Reynolds number, i . e . ,  1500, spanwise mode 

suppres s ion  e l i m i n a t e s  the  s u b c r i t i c a l ,  secondary i n s t a b i l i t y ,  and a t  h igher  

Reynolds numbers, e .g., 5000, t h i s  i n s t a b i l i t y  i s  s u b s t a n t i a l l y  reduced. 

S imi l a r  r e s u l t s  were obtained f o r  the  uniformly con t ro l l ed  p a r a l l e l  boundary 

l a y e r  a t  t h e  low Reynolds number of 518 and a t  t he  h igher  one of 8950. 

An example of t hese  r e s u l t s  i s  shown here  i n  Figure 16 f o r  the  heated 

boundary l a y e r  a t  Re = 1100, where, f o r  s i m p l i c i t y ,  t h e  temperature  i s  held 

f ixed  a t  i t s  mean l e v e l .  A t  a 2-D TS wave amplitude of 2.7%, c o n t r o l  of  t h e  

spanwise mode i s  not  s u f f i c i e n t  t o  s t a b i l i z e  the  flow. However, t h e  remaining 

i n s t a b i l i t y  i s  q u i t e  weak and no longer  has  t h e  c h a r a c t e r  of  t h e  lambda v o r t e x  

and detached shear  l a y e r .  Even a f t e r  8 TS pe r iods  the  o r i g i n a l  ob l ique  modes 

are s t i l l  of  lower amplitude than the 2-D mode. The flow f i e l d  a t  t = 8 i s  

i l l u s t r a t e d  i n  Figure 17. (The g r i d  here  was 36 x 96 x 192.) The v o r t e x  

l i n e s  a r e  only  mi ld ly  d i s t o r t e d  and t h e r e  i s  no i n d i c a t i o n  of a lambda 

vo r t ex .  There i s  a p a i r  of c o u n t e r r o t a t i n g  l o n g i t u d i n a l  v o r t i c e s  pinched 

c l o s e  t o g e t h e r  near  the  peak plane. However, as i s  documented i n  Table 6 ,  t h e  

i n t e n s i t y  of t h i s  i n s t a b i l i t y  i s  f a r  less than when the  spanwise mode i s  

o p e r a t i o n a l .  

Concluding Remarks 

For a l l  of t he  LFC techniques  examined h e r e ,  f i n i t e  ampli tude e f f e c t s  are 

d e s t a b i l i z i n g ,  $.e., f i n i t e  amplitude 2-D TS waves grow f a s t e r  than predic ted  

by l i n e a r  theory.  We a l s o  f i n d ,  i n  d i r e c t  c o n t r a s t  t o  the results from l i n e a r  

theory  f o r  low amplitude waves, t h a t  temperature  f l u c t u a t i o n s  e x e r t  a f u r t h e r  
I 
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d e - s t a b i l i z i n g  in f luence  on f i n i t e  amplitude 2-D TS waves. The c o n t r o l l e d  

boundary l a y e r s  are ,  of  cour se ,  s u b j e c t  t o  i n t e n s e  3-D secondary instabi1. i -  

t i e s .  The in s t an taneous  growth r a t e s  of  both the  fundamental and subharmonic 

i n s t a b i l i t i e s  a r e  s t r o n g l y  t i e d  t o  the ampli tude of t he  primary 2-D wave. The 

p r i n c i p a l  f i n i t e  amplitude e f f e c t s  upon the  3-D secondary i n s t a b i l i t i e s  occur  

through the f a s t e r  growth of the  2-D wave. 

The secondary i n s t a b i l i t i e s  of  f lows c o n t r o l l e d  by uniform pressure  

g r a d i e n t ,  s u c t i o n ,  and hea t ing  a r e  q u a l i t a t f v e l y  s i m i l a r  t o  each o t h e r  and t o  

uncont ro l led  flows. The p r i n c i p a l  q u a n t i t a t i v e  d i f f e r e n c e  i s  between w a l l -  

heated boundary l a y e r s  and the  o t h e r  two c o n t r o l l e d  cases .  E s p e c i a l l y  when 

one t r a n s l a t e s  the p a r a l l e l  boundary l a y e r  r e s u l t s  i n t o  terms appropr i a t e  for 

t he  growing boundary l a y e r ,  our  numerical  r e s u l t s  i n d i c a t e  t h a t  the  nonl inear  

i n s t a b i l i t i e s  of heated flows are more severe  than those of f lows c o n t r o l l e d  

e q u a l l y  w e l l  i n  a l i n e a r  sense by p res su re  g r a d i e n t  o r  suc t ion .  

The pronounced e f f e c t  of  temperature p e r t u r b a t i o n s  i n  heated boundary 

l a y e r s  i s  r e spons ib l e  f o r  p a r t  of t h i s  d i f f e r e n c e .  Flow-field a n a l y s i s  of the  

heated boundary-layer s imula t ion  r e v e a l s  t h a t  t he  temperature  f l u c t u a t i o n s  are 

l a r g e l y  due t o  convect ion d r i v e n  by t h e  temperature  g r a d i e n t s .  

The i n v e s t i g a t i o n  of spanwise mode c o n t r o l  has  d i sc losed  t h a t  t h i s  can 

s u b s t a n t i a l l y  d e l a y  t r a n s i t i o n .  It a l s o  has suggested t h a t  s e v e r a l  d i f f e r e n t  

non l inea r  i n t e r a c t i o n s  c o n t r i b u t e  s i g n i f i c a n t l y  t o  the  secondary i n s t a b i l i t y .  
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Table 1. Some Control led Boundary-Layer Modes f o r  Re = 8950 

i I c a l c  w wi w r Control Mode a 8 

= 0.55 TS 2-D 0.167675 0.00 0.037384 0.000095 0.000096 

TS 3-D 0.167675 0.167675 0.040948 -0.001012 -0.001028 
$P 

Fw = 0.895 TS 2-D 0.162057 0.00 0.036207 0.000093 0.000093 

TS 3-D 0.162057 0.162057 0.039742 -0.000968 -0.000993 

T 1.10 TS 2-D 0.149937 0.00 0.029337 0.000093 0.00009 7 

TS 3-D 0.149937 0.149937 0.032105 -0.000798 -0.000793 

Table 2. Mean Flow C h a r a c t e r i s t i c s  f o r  R e  = 8950 

Control Re * 
6 Blas ius  

None 

8 = 0.55 

T = 1.10 

1.7244 

0.9448 

1.3986 

8,950 

16,330 

11,040 

Table 3. Non-linear/Linear Amplitude Rat io  f o r  1 / 2 %  2-D Waves 
~~ ~~~ ~~~~~ ~ ~~~ ~~ ~ ~ ~ 

TIME PRESSURE GRADIENT HEATING (FIXED T)  HEATING 

1.004 

1.013 

1.022 

1.005 

1.017 

1.030 

1.001 

1.016 

1.080 
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Table 4. Non-linear/Linear Amplitude Ratio for 2% 2-D Waves 

TIME PRESSURE GRADIENT HEATING (FIXED T) HE AT I NG 

1 1.050 1.065 1.184 

2 1.189 1.257 1.605 

3 1.378 1.567 2.387 

Table 5. Some Controlled Boundary-Layer Modes for Re = 1100 

@i w r Control Mode a B 

none TS 2-D .250 0. .08624 .00333 

.250 .209 .09396 .00126 TS 3-D 

= .lo54 TS 2-D .250 0. .08662 -.00100 

TS 3-D .250 .209 .09349 -. 00307 OP 

T = 1.0275 TS 2-D .250 0. .08486 -.00102 
TS 3-D .250 .209 .09161 -. 00372 

Table 6. Effect of Spanwise Mode on Transition 

Case E 2 ( t = 0 )  t 

uncontrolled 0.018 3 7/8 1.6 1.5 0.20 

heated 0.027 4 1/4 1.2 1 .o 0.085 

heated (spanwise 0.027 8 0.4 0.8 0.034 
mode suppressed) 
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Fig. 1. Schematic o f  t he  growing boundary l a y e r  on a f l a t  p l a t e .  
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Ffg. 2. Schematic of the para l l e l  boundary layer  approximation. 
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Fig. 3. Def in i t ion  o f  laminar flow control parameters. 
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Mean flow 2-D TS wave 3-D TS wave 
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Fig. 4. I n i t i a l  cond i t ions  f o r  3-D numerical s imula t ions .  
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Fig. 5. Mean flow profiles at Re = 8950. The velocity U and temperature 

T are scaled by their freestream values. The normal coordinate y is scaled 

by the displacement thickness. The uncontrolled profiles are indicated by the 

dashed line. 
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Heating control 
------ Heating control (fixed T) 
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= 150°F 

F i g .  6 .  Neutral curves f o r  heated boundary layers  (Lowell and Reshotko 

( 1 9 7 4 ) ) .  
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Fig. 7. 

sured  i n  u n i t s  of t he  per iod of the  uncont ro l led  two-dimensional TS wave. 
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two-dimensional TS ampli tudes of 2.7%. 
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Fig. 16. Harmonic h i s t o r y  for a R e  = 1100 heated boundary l a y e r  s imula t ion  

wi th  an i n i t i a l  two-dimensional TS ampli tude of 2.7%, but  with t h e  spanwise 

mode suppressed.  
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Fig. 1 7 .  Flow f i e l d  a f t e r  8 periods for  the R e  = 1100 boundary layer  

t r a n s i t i o n  with the spanwise mode suppressed. 
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